Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

DNA sequencing and bar‐coding using solid‐state nanopores

Identifieur interne : 000405 ( Istex/Checkpoint ); précédent : 000404; suivant : 000406

DNA sequencing and bar‐coding using solid‐state nanopores

Auteurs : Evrim Atas [États-Unis] ; Alon Singer [États-Unis] ; Amit Meller [États-Unis, Israël]

Source :

RBID : ISTEX:A43742F6349B0CE244D3CD1E90A13C0580CA59EA

English descriptors

Abstract

Nanopores have emerged as a prominent single‐molecule analytic tool with particular promise for genomic applications. In this review, we discuss two potential applications of the nanopore sensors: First, we present a nanopore‐based single‐molecule DNA sequencing method that utilizes optical detection for massively parallel throughput. Second, we describe a method by which nanopores can be used as single‐molecule genotyping tools. For DNA sequencing, the distinction among the four types of DNA nucleobases is achieved by employing a biochemical procedure for DNA expansion. In this approach, each nucleobase in each DNA strand is converted into one of four predefined unique 16‐mers in a process that preserves the nucleobase sequence. The resulting converted strands are then hybridized to a library of four molecular beacons, each carrying a unique fluorophore tag, that are perfect complements to the 16‐mers used for conversion. Solid‐state nanopores are then used to sequentially remove these beacons, one after the other, leading to a series of photon bursts in four colors that can be optically detected. Single‐molecule genotyping is achieved by tagging the DNA fragments with γ‐modified synthetic peptide nucleic acid probes coupled to an electronic characterization of the complexes using solid‐state nanopores. This method can be used to identify and differentiate genes with a high level of sequence similarity at the single‐molecule level, but different pathology or response to treatment. We will illustrate this method by differentiating the pol gene for two highly similar human immunodeficiency virus subtypes, paving the way for a novel diagnostics platform for viral classification.

Url:
DOI: 10.1002/elps.201200266


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:A43742F6349B0CE244D3CD1E90A13C0580CA59EA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">DNA sequencing and bar‐coding using solid‐state nanopores</title>
<author>
<name sortKey="Atas, Evrim" sort="Atas, Evrim" uniqKey="Atas E" first="Evrim" last="Atas">Evrim Atas</name>
</author>
<author>
<name sortKey="Singer, Alon" sort="Singer, Alon" uniqKey="Singer A" first="Alon" last="Singer">Alon Singer</name>
</author>
<author>
<name sortKey="Meller, Amit" sort="Meller, Amit" uniqKey="Meller A" first="Amit" last="Meller">Amit Meller</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A43742F6349B0CE244D3CD1E90A13C0580CA59EA</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/elps.201200266</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-WP5L5291-S/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000493</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000493</idno>
<idno type="wicri:Area/Istex/Curation">000493</idno>
<idno type="wicri:Area/Istex/Checkpoint">000405</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000405</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">DNA sequencing and bar‐coding using solid‐state nanopores</title>
<author>
<name sortKey="Atas, Evrim" sort="Atas, Evrim" uniqKey="Atas E" first="Evrim" last="Atas">Evrim Atas</name>
<affiliation wicri:level="3">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Boston University, MA, Boston</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singer, Alon" sort="Singer, Alon" uniqKey="Singer A" first="Alon" last="Singer">Alon Singer</name>
<affiliation wicri:level="3">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Boston University, MA, Boston</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meller, Amit" sort="Meller, Amit" uniqKey="Meller A" first="Amit" last="Meller">Amit Meller</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Boston University, Boston, MA</wicri:regionArea>
<wicri:noRegion>MA</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Faculty of Biomedical Engineering, The Technion, Haifa</wicri:regionArea>
<wicri:noRegion>Haifa</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">ELECTROPHORESIS</title>
<title level="j" type="sub">Next Generation Sequencing and Genotyping</title>
<title level="j" type="alt">ELECTROPHORESIS</title>
<idno type="ISSN">0173-0835</idno>
<idno type="eISSN">1522-2683</idno>
<imprint>
<biblScope unit="vol">33</biblScope>
<biblScope unit="issue">23</biblScope>
<biblScope unit="page" from="3437">3437</biblScope>
<biblScope unit="page" to="3447">3447</biblScope>
<biblScope unit="page-count">11</biblScope>
<date type="published" when="2012-12">2012-12</date>
</imprint>
<idno type="ISSN">0173-0835</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0173-0835</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Anking regions</term>
<term>Binding sites</term>
<term>Biomedical</term>
<term>Biomedical applications</term>
<term>Biomedical engineering</term>
<term>Biomedical research</term>
<term>Boston university</term>
<term>Calibration curve</term>
<term>Calibration distributions</term>
<term>Code oligo</term>
<term>Code oligos</term>
<term>Complementary semiconductor</term>
<term>Current blockades</term>
<term>Delay time</term>
<term>Delay times</term>
<term>Dense arrays</term>
<term>Diagnostic platform</term>
<term>Drug targets</term>
<term>Excellent agreement</term>
<term>Genome</term>
<term>Genome analyses</term>
<term>Genomic</term>
<term>Genotyping</term>
<term>Gmbh</term>
<term>High level</term>
<term>Identical distributions</term>
<term>Immune syndr</term>
<term>Individual delay times</term>
<term>Individual nucleobases</term>
<term>Kgaa</term>
<term>Lett</term>
<term>Long biopolymer</term>
<term>Mcnally</term>
<term>Meller</term>
<term>Molecular beacons</term>
<term>Molecule</term>
<term>Nano lett</term>
<term>Nanopore</term>
<term>Nanopore method</term>
<term>Nanopores</term>
<term>Next cycle</term>
<term>Novel diagnostics platform</term>
<term>Nucleic acid</term>
<term>Nucleic acids</term>
<term>Nucleobase</term>
<term>Nucleobase sequence</term>
<term>Nucleobases</term>
<term>Optical detection</term>
<term>Optipore method</term>
<term>Photon</term>
<term>Photon bursts</term>
<term>Pore</term>
<term>Probe</term>
<term>Probe library</term>
<term>Readout</term>
<term>Representative traces</term>
<term>Restriction enzyme</term>
<term>Sequence similarity</term>
<term>Sequencing</term>
<term>Sequencing method</term>
<term>Single base</term>
<term>Statistical analysis</term>
<term>Subtype</term>
<term>Subtypes</term>
<term>Synthetic peptide</term>
<term>Target ssdna</term>
<term>Translocation</term>
<term>Unzipping</term>
<term>Unzipping events</term>
<term>Unzipping process</term>
<term>Uorophores</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Wanunu</term>
<term>Weinheim</term>
<term>Weinheim electrophoresis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Nanopores have emerged as a prominent single‐molecule analytic tool with particular promise for genomic applications. In this review, we discuss two potential applications of the nanopore sensors: First, we present a nanopore‐based single‐molecule DNA sequencing method that utilizes optical detection for massively parallel throughput. Second, we describe a method by which nanopores can be used as single‐molecule genotyping tools. For DNA sequencing, the distinction among the four types of DNA nucleobases is achieved by employing a biochemical procedure for DNA expansion. In this approach, each nucleobase in each DNA strand is converted into one of four predefined unique 16‐mers in a process that preserves the nucleobase sequence. The resulting converted strands are then hybridized to a library of four molecular beacons, each carrying a unique fluorophore tag, that are perfect complements to the 16‐mers used for conversion. Solid‐state nanopores are then used to sequentially remove these beacons, one after the other, leading to a series of photon bursts in four colors that can be optically detected. Single‐molecule genotyping is achieved by tagging the DNA fragments with γ‐modified synthetic peptide nucleic acid probes coupled to an electronic characterization of the complexes using solid‐state nanopores. This method can be used to identify and differentiate genes with a high level of sequence similarity at the single‐molecule level, but different pathology or response to treatment. We will illustrate this method by differentiating the pol gene for two highly similar human immunodeficiency virus subtypes, paving the way for a novel diagnostics platform for viral classification.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Israël</li>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Boston</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Atas, Evrim" sort="Atas, Evrim" uniqKey="Atas E" first="Evrim" last="Atas">Evrim Atas</name>
</region>
<name sortKey="Meller, Amit" sort="Meller, Amit" uniqKey="Meller A" first="Amit" last="Meller">Amit Meller</name>
<name sortKey="Meller, Amit" sort="Meller, Amit" uniqKey="Meller A" first="Amit" last="Meller">Amit Meller</name>
<name sortKey="Singer, Alon" sort="Singer, Alon" uniqKey="Singer A" first="Alon" last="Singer">Alon Singer</name>
</country>
<country name="Israël">
<noRegion>
<name sortKey="Meller, Amit" sort="Meller, Amit" uniqKey="Meller A" first="Amit" last="Meller">Amit Meller</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000405 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 000405 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:A43742F6349B0CE244D3CD1E90A13C0580CA59EA
   |texte=   DNA sequencing and bar‐coding using solid‐state nanopores
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021